Package: FuzzyResampling 0.6.4

FuzzyResampling: Resampling Methods for Triangular and Trapezoidal Fuzzy Numbers

The classical (i.e. Efron's, see Efron and Tibshirani (1994, ISBN:978-0412042317) "An Introduction to the Bootstrap") bootstrap is widely used for both the real (i.e. "crisp") and fuzzy data. The main aim of the algorithms implemented in this package is to overcome a problem with repetition of a few distinct values and to create fuzzy numbers, which are "similar" (but not the same) to values from the initial sample. To do this, different characteristics of triangular/trapezoidal numbers are kept (like the value, the ambiguity, etc., see Grzegorzewski et al. <doi:10.2991/eusflat-19.2019.68>, Grzegorzewski et al. (2020) <doi:10.2991/ijcis.d.201012.003>, Grzegorzewski et al. (2020) <doi:10.34768/amcs-2020-0022>, Grzegorzewski and Romaniuk (2022) <doi:10.1007/978-3-030-95929-6_3>, Romaniuk and Hryniewicz (2019) <doi:10.1007/s00500-018-3251-5>). Some additional procedures related to these resampling methods are also provided, like calculation of the Bertoluzza et al.'s distance (aka the mid/spread distance, see Bertoluzza et al. (1995) "On a new class of distances between fuzzy numbers") and estimation of the p-value of the one- and two- sample bootstrapped test for the mean (see Lubiano et al. (2016, <doi:10.1016/j.ejor.2015.11.016>)). Additionally, there are procedures which randomly generate trapezoidal fuzzy numbers using some well-known statistical distributions.

Authors:Maciej Romaniuk [aut, cre], Przemyslaw Grzegorzewski [aut], Olgierd Hryniewicz [aut]

FuzzyResampling_0.6.4.tar.gz
FuzzyResampling_0.6.4.zip(r-4.5)FuzzyResampling_0.6.4.zip(r-4.4)FuzzyResampling_0.6.4.zip(r-4.3)
FuzzyResampling_0.6.4.tgz(r-4.4-any)FuzzyResampling_0.6.4.tgz(r-4.3-any)
FuzzyResampling_0.6.4.tar.gz(r-4.5-noble)FuzzyResampling_0.6.4.tar.gz(r-4.4-noble)
FuzzyResampling_0.6.4.tgz(r-4.4-emscripten)FuzzyResampling_0.6.4.tgz(r-4.3-emscripten)
FuzzyResampling.pdf |FuzzyResampling.html
FuzzyResampling/json (API)
NEWS

# Install 'FuzzyResampling' in R:
install.packages('FuzzyResampling', repos = c('https://mroman-ibs.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mroman-ibs/fuzzyresampling/issues

On CRAN:

4.18 score 5 scripts 464 downloads 26 exports 0 dependencies

Last updated 2 months agofrom:a5fa3e5cbd. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winOKNov 03 2024
R-4.5-linuxOKNov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:BertoluzzaDistanceCalculateAmbiguityCalculateAmbiguityLCalculateAmbiguityRCalculateExpValueCalculateFuzzinessCalculateValueCalculateWidthClassicalBootstrapComparePowerOneSampleCTestComparisonOneSampleCTestComparisonSEMeanDMethodEWMethodGeneratorFuzzyNumbersGeneratorNExpUUGeneratorNUOneSampleCTestresamplingMethodssamplingGeneratorsSEResamplingMeanTwoSampleCTestVAAMethodVAFMethodVAMethodWMethod

Dependencies:

Resampling Fuzzy Numbers with Statistical Applications: FuzzyResampling Package

Rendered fromRJ-2023-036.pdf.asisusingR.rsp::asison Nov 03 2024.

Last update: 2024-10-04
Started: 2024-10-04

Readme and manuals

Help Manual

Help pageTopics
Calculate Bertoluzza's (mid/spread) distance for triangular and trapezoidal fuzzy numbersBertoluzzaDistance
Calculation of the ambiguity for triangular and trapezoidal fuzzy numbersCalculateAmbiguity
Calculation of the left-hand ambiguity for triangular and trapezoidal fuzzy numbersCalculateAmbiguityL
Calculation of the right-hand ambiguity for triangular and trapezoidal fuzzy numbersCalculateAmbiguityR
Calculation of the expected value for triangular and trapezoidal fuzzy numbersCalculateExpValue
Calculation of the fuzziness for triangular and trapezoidal fuzzy numbersCalculateFuzziness
Calculation of the value for triangular and trapezoidal fuzzy numbersCalculateValue
Calculation of the width for triangular and trapezoidal fuzzy numbersCalculateWidth
Classical bootstrap procedure for triangular and trapezoidal fuzzy numbersClassicalBootstrap
Comparison of the resampling approaches based on the power for the one-sample test for the mean.ComparePowerOneSampleCTest
Comparison of the resampling approaches based on the power for the one-sample test for the mean.ComparisonOneSampleCTest
Comparison of the resampling approaches based on the SE/MSE for the mean.ComparisonSEMean
d method for resampling triangular and trapezoidal fuzzy numbersDMethod
E(xpected value)W(idth) resampling method for triangular and trapezoidal fuzzy numbersEWMethod
Generate initial sample using various random distributions.GeneratorFuzzyNumbers
Generate initial sample using the normal and uniform distributions.GeneratorNExpUU
Generate initial sample using the normal and uniform distributions.GeneratorNU
Calculate p-value of the one-sample test for the meanOneSampleCTest
A vector containing names of all resampling methods.resamplingMethods
A vector containing names of all sampling generatorssamplingGenerators
Calculate SE/MSE for the mean of the bootstrapped samples.SEResamplingMean
Calculate p-value of the two-sample test for the meanTwoSampleCTest
V(alue)A(mbiguity, left-hand)A(mbiguity, right-hand) resampling method for triangular and trapezoidal fuzzy numbersVAAMethod
V(alue)A(mbiguity)F(uzziness) resampling method for triangular and trapezoidal fuzzy numbersVAFMethod
V(alue)A(mbiguity) resampling method for triangular and trapezoidal fuzzy numbersVAMethod
w method for resampling triangular and trapezoidal fuzzy numbersWMethod